
Probly Documentation
Release 0.1.0

Benjamin Wallace

Sep 04, 2022

Documentation

1 Installation 1

2 Getting started 3

3 Dependence 5

4 Independent copies 7

5 Random matrices 9

6 Function application 11

7 Conditioning 13

8 Random parameters 15

9 Custom models 17

10 Examples 19
10.1 The central limit theorem . 19
10.2 The semicircle law . 20
10.3 Custom distributions . 21

11 API Reference 23
11.1 Distributions . 23
11.2 Utilities . 24

12 Repository 25

13 Indices and tables 27

i

ii

CHAPTER 1

Installation

Probly can be installed using pip from GitHub as follows:

pip install git+https://github.com/bencwallace/probly#egg=probly

Note: Probly makes use of NumPy, SciPy, and Matplotlib.

1

https://pypi.org/project/pip/
http://www.numpy.org/
https://www.scipy.org/
https://matplotlib.org/

Probly Documentation, Release 0.1.0

2 Chapter 1. Installation

CHAPTER 2

Getting started

We begin by importing probly.

>>> import probly as pr

Next, we initialize some pre-packaged random variables.

>>> # A Bernoulli random variable with parameter 0.5
>>> X = pr.Ber()
>>> # A Bernoulli random variable independent of X with parameter 0.9
>>> Y = pr.Ber(0.9)
>>> # A uniform random variable on the interval [-10, 10]
>>> Z = pr.Unif(-10, 10)

Calling a random variable produces a random sample from its distribution. In order to obtain reproducible results, we
pass a seed as an argument to the random variable. Calling the same random variable with the same seed will produce
the same result.

>>> seed = 99 # An arbitrary but fixed seed
>>> Z(seed)
-4.340731821079555
>>> Z(seed)
-4.340731821079555

Note: An entire Probly session can be seeded by using pr.seed. This will determine the sequence of outputs
produced by sampling a sequence of random variables initialized in a given order with a given sequence of seeds; it is
distinct from seeding the random variables themselves.

Random variables can be combined via arithmetical operations.

>>> W = (1 + X) * Z / (5 + Y)
>>> # W is a new random object

(continues on next page)

3

Probly Documentation, Release 0.1.0

(continued from previous page)

>>> type(W)
<class 'probly.core.RandomVariable'>

The result of such operations is itself a random variable whose distribution may not be know explicitly. We can
nevertheless sample from this unknown distribution!

>>> W(seed)
-1.4469106070265185

We can also compute properties of a random variable, such as its mean.

>>> W.mean()
0.023611159797914952

4 Chapter 2. Getting started

CHAPTER 3

Dependence

Note that W is dependent on X, Y, and Z. This essentially means that the following must output True.

>>> x = X(seed)
>>> y = Y(seed)
>>> z = Z(seed)
>>> w = W(seed)
>>> w == (1 + x) * z / (5 + y)
True

5

Probly Documentation, Release 0.1.0

6 Chapter 3. Dependence

CHAPTER 4

Independent copies

Separate instantiations of a random variable will produce independent copies: for instance, samples from two instan-
tiations of a normal random variable will be independent of one another, even with the same seed.

>>> pr.Normal()(seed)
-0.8113001427396095
>>> pr.Normal()(seed)
0.09346601550504334

Independent copies of a random variable can also be produced as follows.

>>> Wcopy = W.copy()
>>> Wcopy(seed)
2.430468450181704

7

Probly Documentation, Release 0.1.0

8 Chapter 4. Independent copies

CHAPTER 5

Random matrices

Random NumPy arrays (in particular, random matrices) can be formed from other random variables.

>>> M = pr.array([[X, Z], [W, Y]])
>>> type(M)
<class 'probly.core.RandomVariable'>

Random arrays can be manipulated like ordinary NumPy arrays.

>>> M[0, 0](seed) == X(seed)
True
>>> import numpy as np
>>> S = np.sum(M)
>>> S(seed) == X(seed) + Z(seed) + W(seed) + Y(seed)
True

9

Probly Documentation, Release 0.1.0

10 Chapter 5. Random matrices

CHAPTER 6

Function application

Any functions can be lifted to a map between random variables using the @pr.lift decorator.

>>> from numpy.linalg import det
>>> det = pr.lift(det)

An equivalent way of doing this is as follows:

@pr.lift
def det(m):

return np.linalg.det(m)

The function det can now be applied to M.

>>> D = det(M)
>>> D(seed)
-5.280650914177544

11

Probly Documentation, Release 0.1.0

12 Chapter 6. Function application

CHAPTER 7

Conditioning

Random variables can be conditioned as in the following example:

>>> C = W.given(Y == 1, Z > 0)
>>> C(seed)
1.97965814796514

Any boolean-valued random variable can be used as a condition.

13

Probly Documentation, Release 0.1.0

14 Chapter 7. Conditioning

CHAPTER 8

Random parameters

Random variables can themselves be used to parameterize other random variables, as in the following example:

>>> U = pr.Unif()
>>> B = pr.Ber(U)
>>> B(seed)
0

15

Probly Documentation, Release 0.1.0

16 Chapter 8. Random parameters

CHAPTER 9

Custom models

Custom models can be constructed by applying the pr.model decorator, evaluated on a list of parameter names, to
a function of these parameters whose return value is a sampler (a function from a random seed to a random sample).

>>> @pr.model('a', 'b')
>>> def SquareOfUniform(a, b):
>>> def sampler(seed):
>>> np.random.seed()
>>> return np.random.uniform(a, b) ** 2
>>> return sampler

This makes SquareOfUniform into a class whose instances are random variable objects that can be manipulated
as above. To construct classes of random variables with additional functionality (e.g. built-in mean, variance, etc.),
one can directly subclass Distribution as in the example at Custom distributions.

17

Probly Documentation, Release 0.1.0

18 Chapter 9. Custom models

CHAPTER 10

Examples

10.1 The central limit theorem

Let X be a Bernoulli random variable.

>>> import probly as pr
>>> X = pr.Ber()

We are interested in the sum of many independent copies of X. For this example, let’s take “many” to be 1000.

>>> num_copies = 1000
>>> Z = np.sum(pr.iid(X, num_copies))

The sum Z is itself a random variable, but its precise distribution, unlike that of X, is unknown.

Nevertheless, the central limit theorem states, roughly, that Z is approximately normally distributed. We can check
this empirically by plotting a histogram of the distribution of Z.

The more samples of Z we use to produce the histogram, the better an approximation it will be to the variable’s true
distribution. But each time we sample Z, we must sample 1000 Bernoulli random variables and sum the results, so
computing a histogram from very many samples can take a long time. Below we use 1000 samples, but you may want
to reduce this number if running the code takes too long.

>>> pr.hist(Z, num_samples=1000)

The result resembles the famous bell-shaped curve of the normal distribution.

19

Probly Documentation, Release 0.1.0

10.2 The semicircle law

A Wigner random matrix is a random symmetric matrix whose upper-diagonal entries are independent and identically
distributed. We can construct a Wigner matrix using Wigner. For instance, let’s create a 1000-dimensional Wigner
matrix with normally distributed entries.

>>> import probly as pr
>>> dim = 1000
>>> M = pr.Wigner(dim)

The semicircle law states that if we normalize this matrix by dividing by the square root of 1000, then the eigenvalues
of the resulting (random) matrix should follow the semicircle distribution. Let’s check this empirically. First, we nor-
malize M and then we construct its (random) eigenvalues by applying NumPy’s numpy.linalg.eigvals using lift().

>>> from numpy.linalg import eigvals
>>> M = M / np.sqrt(dim)
>>> eigvals = pr.lift(eigvals)
>>> E = eigvals(M)

The distribution of the eigenvalues can be visualized using the hist() function. Note that we need only take 1
sample.

20 Chapter 10. Examples

https://en.wikipedia.org/wiki/Wigner_semicircle_distribution
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.eigvals.html

Probly Documentation, Release 0.1.0

>>> pr.hist(E, num_samples=1) # doctest: +SKIP

10.3 Custom distributions

The following example shows how to create a custom distribution. We’ll start by constructing a simple non-random
class.

>>> class Human:
>>> def __init__(self, height, weight):
>>> self.height = height
>>> self.weight = weight

We’d like to create a kind of normal distribution over possible humans. We can do this as follows.

>>> import numpy as np
>>> from probly.distr.distributions import Distribution
>>> class NormalHuman(Distribution):
>>> def __init__(self, female_stats, male_stats):
>>> self.female_stats = female_stats
>>> self.male_stats = male_stats
>>> super().__init__()
>>> def _sampler(self, seed):

(continues on next page)

10.3. Custom distributions 21

Probly Documentation, Release 0.1.0

(continued from previous page)

>>> np.random.seed(seed)
>>> gender = np.random.choice(2, p=[0.5, 0.5])
>>> if gender == 0:
>>> height_mean, weight_mean, cov = self.female_stats
>>> else:
>>> height_mean, weight_mean, cov = self.male_stats
>>> means = [height_mean, weight_mean]
>>> np.random.seed(seed)
>>> height, weight = np.random.multivariate_normal(means, cov)
>>> return Human(gender, height, weight)

All the capabilities of random variables, including all those discussed above, will be available to our new random
variable objects.

Note: Of course, certain operations may result in errors on sampling. For instance, sampling from the “sum” of two
random humans will raise an error unless we overload addition for humans by defining __add__(self, other)
in the Human class.

Let’s initialize an instance of this random variable.

>>> f_cov = np.array([[80, 5], [5, 99]])
>>> f_stats = [160, 65, f_cov]
>>> m_cov = np.array([[70, 4], [4, 11]])
>>> m_stats = [180, 75, m_cov]
>>> H = NormalHuman(f_stats, m_stats)

We can sample from and manipulate such a random variable as usual.

>>> @pr.lift
>>> def bmi(human):
>>> return human.weight / (human.height / 100) ** 2
>>> BMI = bmi(H)
>>> BMI(seed)
23.57076738620301

22 Chapter 10. Examples

CHAPTER 11

API Reference

11.1 Distributions

Distribution

11.1.1 Discrete random variables

RandInt
Multinomial
Bin
Ber
NegBin
Geom
HyperGeom
Pois

11.1.2 Continuous random variables

Gamma
ChiSquared
Exp
Unif
Normal
Beta
PowerLaw
F
StudentT
Laplace

Continued on next page

23

Probly Documentation, Release 0.1.0

Table 3 – continued from previous page
Logistic
VonMises

11.1.3 Random arrays

Wigner
Wishart

11.2 Utilities

24 Chapter 11. API Reference

CHAPTER 12

Repository

Probly is open source and available on GitHub.

25

https://github.com/bencwallace/probly

Probly Documentation, Release 0.1.0

26 Chapter 12. Repository

CHAPTER 13

Indices and tables

• genindex

• search

27

	Installation
	Getting started
	Dependence
	Independent copies
	Random matrices
	Function application
	Conditioning
	Random parameters
	Custom models
	Examples
	The central limit theorem
	The semicircle law
	Custom distributions

	API Reference
	Distributions
	Utilities

	Repository
	Indices and tables

